![]() |
Políticas Públicas y Su Impacto en Proyectos Universitarios Cabello Bonilla, Víctor Francisco / Silva Ruíz, Gilberto Bonilla Artigas Editores |
![]() |
Social Work Research & Evaluation: Examined Practice For Action Depoy, Elizabeth / Gilson, Stephen Sage Publications, Inc. |
![]() |
Programas Institucionales de Tutoria: Actores, Procesos y Contextos, Los Alejandra Romo Lopez (Coordinadora) Anuies |
![]() |
Introduction To Social Research Quantitative And Qualitative Approaches Punch Keith F. Sage Publications, Inc. |
![]() |
Defensible Teacher Evaluation: Student Growth Through Classroom Assessment Richard (Rick) J. (John) Stiggins Corwin Press |
![]() |
Abc de la Evaluacion del Estado de Nutricion, El. Suverza, Araceli y Karime Haua. Mc Graw-Hill Companies, Inc. |
![]() |
Adquisicion del Vasco y del Castellano en Niños Bilingües, La Meisel, Jürgen M. Iberoamericana Vervuert |
![]() |
Proyectos de Inversion. Evaluacion y Formulacion Morales Castro, Arturo y Jose Antonio Mc Graw Hill Educacion |
![]() ![]() |
Título: Multiple And Generalized Nonparametric Regression | |
Autor: Fox John | Precio: $342.00 | |
Editorial: Sage Publications, Inc. | Año: 2000 | |
Tema: Evaluacion | Edición: | |
Sinopsis | ISBN: 9780761921899 | |
This book builds on John Fox's previous volume in the QASS Series, Non Parametric Simple Regression. In this monograph readers learn to estimate and plot smooth functions when there are multiple independent variables. While regression analysis traces the dependence of the distribution of a response variable to see if it bears a particular (linear) relationship to one or more of the predictors, nonparametric regression analysis makes minimal assumptions about the form of relationship between the average response and the predictors. This makes nonparametric regression a more useful technique for analyzing data in which there are several predictors that may combine additively to influence the response. (An example could be something like birth order/gender/and temperament on achievement motivation).
Unfortunately, researchers have not had accessible information on nonparametric regression analysis, until now. Beginning with presentation of nonparametric regression based on dividing the data into bins and averaging the response values in each bin, Fox introduces readers to the techniques of kernel estimation, additive nonparametric regression, and the ways nonparametric regression can be employed to select transformations of the data preceding a linear least-squares fit. The book concludes with ways nonparametric regression can be generalized to logit, probit, and Poisson regression. |