Título: Beginning R | ||
Autor: Pace Larry | Precio: $640.00 | |
Editorial: Apress | Año: 2012 | |
Tema: Estadistica, Matematicas, Educación | Edición: 1ª | |
Sinopsis | ISBN: 9781430245544 | |
Beginning R: An Introduction to Statistical Programming is a hands-on book showing how to use the R language, write and save R scripts, build and import data files, and write your own custom statistical functions. R is a powerful open-source implementation of the statistical language S, which was developed by AT&T. R has eclipsed S and the commercially-available S-Plus language, and has become the de facto standard for doing, teaching, and learning computational statistics.
R is both an object-oriented language and a functional language that is easy to learn, easy to use, and completely free. A large community of dedicated R users and programmers provides an excellent source of R code, functions, and data sets. R is also becoming adopted into commercial tools such as Oracle Database. Your investment in learning R is sure to pay off in the long term as R continues to grow into the go to language for statistical exploration and research. Covers the freely-available R language for statistics Shows the use of R in specific uses case such as simulations, discrete probability solutions, one-way ANOVA analysis, and more Takes a hands-on and example-based approach incorporating best practices with clear explanations of the statistics being done What you’ll learn Acquire and install R Import and export data and scripts Generate basic statistics and graphics Program in R to write custom functions Use R for interactive statistical explorations Implement simulations and other advanced techniques Who this book is for Beginning R: An Introduction to Statistical Programming is an easy-to-read book that serves as an instruction manual and reference for working professionals, professors, and students who want to learn and use R for basic statistics. It is the perfect book for anyone needing a free, capable, and powerful tool for exploring statistics and automating their use. Table of Contents Part I. Learning the R Language 1. Getting R and Getting Started 2. Programming in R 3. Writing Reusable Functions 4. Summary Statistics Part II. Using R for Descriptive Statistics 5. Creating Tables and Graphs 6. Discrete Probability Distributions 7. Computing Standard Normal Probabilities Part III. Using R for Inferential Statistics 8. Creating Confidence Intervals 9. Performing t Tests 10. Implementing One-Way ANOVA 11. Implementing Advanced ANOVA 12. Simple Correlation and Regression in R 13. Multiple Correlation and Regression in R 14. Logistic Regression 15. Performing Chi-Square Tests 16. Working in Nonparametric Statistics Part IV. Taking R to the Next Level 17. Using R for Simulation 18. Resampling and Bootstrapping 19. Creating R Packages 20. Executing R Packages |