Tels.: DF (55) 55 54 94 02 • Cuernavaca (777) 102 83 86
portada Descargar ficha PDF Título: Invariant Representations Of Gsp(2) Under Tensor Product With a Quadratic Charac
Autor: Chan Ping-Shun Precio: $972.96
Editorial: American Mathematical Society Año: 2009
Tema: Matematicas, Textos, Teorias Edición:
Sinopsis ISBN: 9780821848227
Let F be a number field or a p-adic field. The author introduces in Chapter 2 of this work two reductive rank one F-groups, \mathbf{H_1}, \mathbf{H_2}, which are twisted endoscopic groups of \textup{GSp}(2) with respect to a fixed quadratic character \varepsilon of the idèle class group of F if F is global, F^\times if F is local. When F is global, Langlands functoriality predicts that there exists a canonical lifting of the automorphic representations of \mathbf{H_1}, $\mathbf{H_2} to those of \textup{GSp}(2). In Chapter 4, the author establishes this lifting in terms of the Satake parameters which parameterize the automorphic representations. By means of this lifting he provides a classification of the discrete spectrum automorphic representations of \textup{GSp}(2) which are invariant under tensor product with \varepsilon.

Table of Contents

Introduction
\varepsilon-endoscopy for \textup{GSp}(2)
The trace formula
Global lifting
The local picture
Appendix A. Summary of global lifting
Appendix B. Fundamental lemma
Bibliography
List of symbols
Index
Disponibilidad: Bajo pedido    Contáctanos  ó Solicítalo
Librería Bonilla SA de CV © Todos los derechos reservados. 2019
Última actualización: Jul 2019