Tels.: DF (55) 55 54 94 02 • Cuernavaca (777) 102 83 86
portada Descargar ficha PDF Título: Generalized Noncrossing Partitions And Combinatorics Of Coxeter Groups
Autor: Armstrong Drew Precio: $910.71
Editorial: American Mathematical Society Año: 2009
Tema: Matematicas, Textos, Teorias Edición:
Sinopsis ISBN: 9780821844908
This memoir is a refinement of the author's PhD thesis -- written at Cornell University (2006). It is primarily a desription of new research but also includes a substantial amount of background material. At the heart of the memoir the author introduces and studies a poset NC^{(k)}(W) for each finite Coxeter group W and each positive integer k. When k=1, his definition coincides with the generalized noncrossing partitions introduced by Brady and Watt in K(\pi, 1)'s for Artin groups of finite type and Bessis in The dual braid monoid. When W is the symmetric group, the author obtains the poset of classical k-divisible noncrossing partitions, first studied by Edelman in Chain enumeration and non-crossing partitions.

Table of Contents
Introduction
Coxeter groups and noncrossing partitions
k-divisible noncrossing partitions
The classical types
Fuss-Catalan combinatorics
Bibliography
Disponibilidad: Bajo pedido    Contáctanos  ó Solicítalo
Librería Bonilla SA de CV © Todos los derechos reservados. 2019
Última actualización: Jul 2019